## LEADINGATTHEEDEE

TECHNOLOGY AND MANUFACTURING DAY

## DISELOSURES

Intel Technology and Manufacturing Day 2017 occurs during Intel's "Quiet Period," before Intel announces its 2017 first quarter financial and operating results. Therefore, presenters will not be addressing first quarter information during this year's program.

Statements in this presentation that refer to forecasts, future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on management's expectations as of March 28, 2017, and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's earnings release dated January 26, 2017, which is included as an exhibit to Intel's Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Forms 10-K, 10-Q and $8-\mathrm{K}$ reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC's website at www.sec.gov.

## KEYMESSAGES

- Intel leads the industry in introducing innovations that enable scaling
- Hyper scaling on Intel 14 nm and 10 nm provides better-than-normal scaling while continuing to reduce cost per transistor
- Intel's 14 nm technology has ~3 year lead over other "10 nm" technologies with similar logic transistor density
- Intel's 10 nm technology provides industry-leading logic transistor density using a quantitative density metric
- Enhanced versions of 14 nm and 10 nm provide improved performance and extend the life of these technologies

Moore's Law is alive and well at Intel

## INTEL INNOVATION LEADERSHIIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL INOOATION LEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL INOOATION LEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL NNOVATION LEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL NNOVATION LEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL NNOVATION LEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## NTEL LNODOATIONLEADERSHIP



Intel leads the industry by at least 3 years in introducing major process innovations

## INTEL NNOVATION LEADERSHIP



Intel developed all the major logic process innovations used by our industry over the past 15 years

## INDUSTRY RECOGNIITONS

## 2 <br> semi

## 2008 SEM AWARD FOR NORTH AMERICA

"For integration of strain-enhanced mobility techniques
for CMOS transistors"

## 2012 SEMI AWARD FOR NORTH AMERICA

"For the first development, integration and introduction of a successful
high-k dielectric and metal electrode gate stack for CMOS IC production"

## Ssemi <br> 2015 SEMI AWARD FOR NORTH AMERICA <br> "For implementation of bulk CMOS FinFET production"

20161 IEE CORPORATE INNOVATION AWARD
"For pioneering the use of high-k metal gate and tri-gate transistor technologies in high-volume manufacturing"

## LOBICAREASEALING



Traditional logic area scaling was ~0.49x per generation using a "gate pitch x cell height" metric

## LOBICAREASEALING


... but "gate pitch x cell height" is not a comprehensive transistor density metric

## LOBIC TRANSISTORDENSITYMETRIG

2-Input NAND Cell


Complex Scan Flip-Flop Logic Cell


$$
0.6 \times \frac{\text { NAND2 Tr Count }}{\text { NAND2 Cell Area }}+0.4 \times \frac{\text { Scan Flip Flop Tr Count }}{\text { Scan Flip Flop Cell Area }}=\# \text { Transistors } / \mathrm{mm}^{2}
$$

Standard NAND+SFF metric is a more accurate estimate of logic transistor density

## LOGIC TRANSFTOR DENSTIY



Logic transistor density improvement was ~2.2x per generation using NAND+SFF metric

## LOGIC TRANSFTOR DENSTIY



14 nm hyper scaling provided ~2.5x transistor density improvement

## LOGIC TRANSFTOR DENSTIY



10 nm hyper scaling provides ~2.7x transistor density improvement

## LOGICTRANSFTOR DENSTIY



Transistor density improvements continue at a rate of ~doubling every $\mathbf{2}$ years

## LOAC TRANGETOR DENSTY



Logic node names should be accompanied with logic transistor density

## LOAC TRANGETOR DENSTY



Other measured transistor densities using same NAND+SFF metric

## LOAC TRANGETOR DENSTY



Rate of density improvement was slow on other 20/16/14 nm technologies

## LOECT TRANSETOR DENSTY



Intel 14 nm has ~1.3x higher transistor density than other 20/16/14 nm

## LOECT TRANSETOR DENSTY



Other "10 nm" technologies will have density similar to Intel 14 nm , but ~3 years later

## LOAC TRANGITOR DENSTY



Logic node names should be accompanied with logic transistor density

## MOORESLAWISALAWOF EBONOMICS



OR

## MORE FUNCTIONELTIY <br> ( more transistors )

Twice the number
of transistors in
same space
MOORE PERFORMANEE

## MIBROPROCESSORDIEAREASGALING



Normal microprocessor die area scaling has been $\sim 0.62 x$ per generation

## MIBROPROCESSORDEAREASGALING



Hyper scaling delivers 0.46-0.43x die area scaling on 14 nm and 10 nm

## GOST PER TRANGSTIOR



## GOST PER TRANGSTIOR



Normal scaling + 450 mm wafers would have provided better CPT

## GOST PER TRANGSTIOR



Hyper scaling on Intel 14 nm and 10 nm provides lower CPT

## TRANGITORPERFORMANEEAND POWER




Scaled transistors continue to provide improved performance and lower power

## TEGHNOLOGY ENHANOENENTS




14 nm enhancements improve performance and extend technology life

## TEGHNOLOGY ENHANGENENTS




10 nm enhancements improve performance and extend technology life

## DERINATIVE TECHINOLOGES

|  | $\underline{\text { CPU }}$ | SoC |
| :--- | :---: | :---: |
| High Perf Transistors | Yes | Yes |
| Low Leakage Transistors | - | Yes |
| Analog/RF Transistors | - | Yes |
| HV I/O Transistors | - | Yes |
| High-Q Inductors | - | Yes |
| Precision Resistors | Yes | Yes |
| MIMCAP | Yes | Yes |

Device Options


Multiple derivative options offered for each technology generation

## 14NM PRODUCTS



Server


Mobile


Server


FPGA

## Wide range of 14 nm products in volume production on various derivative technologies

## HETEROGENEOUSINTEERATONOPIIONS



EMIB technology provides high density, high bandwidth die-die interconnects

## ENSEDEDMULTI-DELNTIERCONEET BRIDEE



EMIB technology provides high density, high bandwidth die-die interconnects

## EMBEDEDMULTI-DIE NTIERCONNECT BRIDGE



## ENBEDDEDMULTI-DINNTERCONNECT BRIDGE



## HETEROGENEOUS LNTEGBATION



EMIB enables dense and cost effective in-package heterogeneous integration

## KEYMESSAGES

- Intel leads the industry in introducing innovations that enable scaling
- Hyper scaling on Intel 14 nm and 10 nm provides better-than-normal scaling while continuing to reduce cost per transistor
- Intel's 14 nm technology has ~3 year lead over other "10 nm" technologies with similar logic transistor density
- Intel's 10 nm technology provides industry-leading logic transistor density using a quantitative density metric
- Enhanced versions of 14 nm and 10 nm provide improved performance and extend the life of these technologies


## Moore's Law is alive and well at Intel

## LEADINGATTHEEDEE

TECHNOLOGY AND MANUFACTURING DAY

